
© 2008 Haim Michael

Bluetooth

© 2008 Haim Michael

Introduction

 The Android platform includes the support for working with

the bluetooth connectivity and allows us to develop

applications that wirelessly exchange data with

applications running on other bluetooth devices.

© 2008 Haim Michael

The Capabilities

 The Android Bluetooth APIs allow the following:

+ Scan for other bluetooth devices.

+ Query for paired bluetooth devices.

+ Create RFCOMM channels connected with other device.

+ Transfer data to/from other devices.

+ Manage multiple connections.

© 2008 Haim Michael

The BluetoothAdapter Class

 This class represents the local bluetooth adapter. It is the

entry point for every bluetooth interaction.

 Using this class we can discover other bluetooth devices,

get the list of those devices ours is already paired with,

instantiate BluetoothDevice based on a known MAC

address and get a BluetoothServerSocket for

listening to other communications coming from other

devices.

© 2008 Haim Michael

The BluetoothDevice Class

 This class represents a remotely connected bluetooth

device.

© 2008 Haim Michael

The BluetoothSocket Interface

 This interface describes the a bluetooth socket (similarly to

TCP socket).

 This interface describes the connection point through

which an application can exchange data with other

bluetooth devices using InputStream and

OutputStream objects.

© 2008 Haim Michael

The BluetoothServerSocket Class

 This class represents an open server socket that listens

for incoming requests. It works similarly to the TCP/IP

ServerSocket class.

 In order to connect two android devices, one must first

open a server socket by instantiating this class.

 When a request for having a connection arrives this class

returns a BluetoothSocket object.

© 2008 Haim Michael

The BluetoothClass Class

 This class describes the general characteristics and the

general capabilities of a bluetooth device.

 It provides access to a set of read only properties.

© 2008 Haim Michael

Bluetooth Permissions

 In order to use the bluetooth in our application we must

include at least one of the following two bluetooth

permissions: BLUETOOTH and BLUETOOTH_ADMIN.

<manifest ... >

 <uses-permission android:name="android.permission.BLUETOOTH" />

 ...

</manifest>

© 2008 Haim Michael

Bluetooth Permissions

 The BLUETOOTH permissions is required for performing

any bluetooth communication, such as requesting a

connection, accepting a connection and transferring data.

 The BLUETOOTH_ADMIN permission is required in order to

initiate device discovery or in order to manipulate

Bluetooth settings. In order to get the BLUETOOTH_ADMIN

permission we should get the BLUETOOTH permission as

well.

© 2008 Haim Michael

Setting Up Bluetooth

 In order to set up a bluetooth connection we must first

verify that our device supports bluetooth connectivity.
...
BluetoothAdapter adapter = BluetoothAdapter.getDefaultAdapter();
if (adapter == null)
{
 // bluetooth is not supported
}
...

© 2008 Haim Michael

Setting Up Bluetooth

 If the bluetooth is supported we can verify that the user

has enabled it... and in case he hasn't we can ask him to.
...
if (!adapter.isEnabled())
{
 Intent intent = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(intent, REQUEST_ENABLE_BT);

}
...

In case the bluetooth is not enabled a dialog window will appear asking for
the user permission to enable bluetooth. If the user responds "Yes," the
system will enable the bluetooth and the focus will return back to our
application. If enabling bluetooth succeeds, our activity will receive the
RESULT_OK result code passed in the onActivityResult() callback method.

© 2008 Haim Michael

Finding Devices

 When the connection is made with a remote device for the

first time, a pairing request is automatically presented to

the user.

 When a device is paired, the basic information (e.g. MAC

address) about that device can be read. Using the MAC

address for a remote device a connection can be initiated.

© 2008 Haim Michael

Finding Devices

 Being paired (when two devices know about each other)

and being connected are two different things.

 Being connected means the devices currently share an

RFCOMM channel and are able to transmit data with each

other.

 Two devices that want to connect with each other must

first be paired. Once they are paired a connection between

the two can be established.

© 2008 Haim Michael

Querying Paired Devices

 Before the application performs a 'device discovery' it

worth querying the set of the devices that are already

paired with our device and check if the desired device is

one of them.
...
Set<BluetoothDevice> set =adapter.getBondedDevices();
if (set.size() > 0)
{

for (BluetoothDevice device : set)
 {

...
}

}
...

© 2008 Haim Michael

Discovering Devices

 Calling the startDiscover(), on our BluetoothAdapter

object we use, will start an asynchronous process through

which other bluetooth devices will be discovered. This method

returns true if the discover process has successfully started.

 In order to get information about each one of the discovered

devices we must register a BroadcastReceiver for the

ACTION_FOUND intent.

© 2008 Haim Michael

Discovering Devices

 For each device the discovery process finds the

ACTION_FOUND intent will be broadcast. This Intent carries the

EXTRA_DEVICE and the EXTRA_CLASS extra fields, that

respectively contain the BluetoothDevice and the

BluetoothClass information.

© 2008 Haim Michael

Discovering Devices

...
private final BroadcastReceiver mReceiver = new BroadcastReceiver()
{
 public void onReceive(Context context, Intent intent)

{
String action = intent.getAction();
if (BluetoothDevice.ACTION_FOUND.equals(action))
{

BluetoothDevice device = intent.getParcelableExtra(
BluetoothDevice.EXTRA_DEVICE);

adapter.add(device.getName()+" "+device.getAddress());
}

}
};
...

...
IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
registerReceiver(mReceiver, filter);
...

the address of the other device will be later used for connecting it

© 2008 Haim Michael

Enabling Discoverability

 In order to be discoverable by other devices we should call

the startActivityForResult(Intent,int) passing

over the ACTION_REQUEST_DISCOVERABLE action intent

object.

 Doing so will issue a request to enable a discoverable mode

through which the device will become discoverable for 120

seconds. We can define a different duration by adding the

EXTRA_DISCOVERABLE_DURATION extra data.

© 2008 Haim Michael

Enabling Discoverability

...
Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
intent.putExtra(BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION, 300);
startActivityForResult(intent);
...

300 seconds is the maximum possible discoverable duration

The result of this code is a pop-up dialog window that requests the user permission to
turn on the device discoverability. If the user approves then the device will become
discoverable for the specified amount of time.

Our activity will then receive a call to the onActivityResult() callback method.

If the user approves becoming discoverable and the bluetooth is still not enabled it
will be automatically enabled.

We can set a broadcast receiver through which we will be notified when the
discoverable mode changes.

© 2008 Haim Michael

Enabling Discoverability

 Enabling the device discoverability isn't necessary when our

application is the one that initiates a connection to another

remote device.

 Enabling the device discoverability might be necessary

when we want our application to host a server socket for

accepting incoming connections only. Being discoverable

will allow the remote device to discover our device before

initiating the connection itself.

© 2008 Haim Michael

Devices Connection

 One device should function as a server hosting a small

server activity that uses the BluetoothServerSocket

class. The other should function as a client hosting a small

activity that uses the BluetoothSocket class.

 The client will use the MAC address of the server in order to

initiate the connection.

© 2008 Haim Michael

Devices Connection

 When both the client and the server are connected to each

other each one of them has a BluetoothSocket object

that underneath is connected with the BluetoothSocket

object on the other device.

 Implementing both the client and the server mechanism in

one application and have that application installed on two

separated devices will allow each one of them to function

both as a client and as a server.

© 2008 Haim Michael

Devices Connection (Server)
private class BluetoothServerThread extends Thread
{

private BluetoothServerSocket serverSocket;

 public BluetoothServerThread()
{

try
{

serverSocket = adapter.
listenUsingRfcommWithServiceRecord(NAME,APP_UUID);

}
catch (IOException e) { }

}

public stopServer()
{

try

{
serverSocket.close();

}
catch(IOException e) {}

}

Calling close() on the BluetoothServerSocket
object from another thread will stop its blocked

waiting for a connection request to arrive.
Calling close() releases the server socket and

the resources it occupied.

A connection will be created only if the remote device has
sent a connection request with a UUID matching the one
registered with this listening server socket

The NAME is an identifiable name of our service.

© 2008 Haim Michael

Devices Connection (Server)
public void run()
{

BluetoothSocket socket = null;
while (true)
{

try
{

socket = serverSocket.accept();
}
catch (IOException e) { }
break;

}

if (socket != null)
{

manageSocket(socket);
serverSocket.close();
break;

}
}

} Unlike TCP/IP, RFCOMM allows one connected client per
channel at a time. In most cases it makes sense to call close()

on the BluetoothServerSocket immediately after accepting
the connected socket.

The accept method shouldn't be
called within the main thread

which is also the UI thread, in
order to avoid blocking it.

Once we get a BluetoothSocket
we can pass it over to another
method to handle it. This is an

imaginary method.

© 2008 Haim Michael

Devices Connection (Client)

private class ConnectThread extends Thread
{
 private BluetoothSocket socket;

private BluetoothDevice device;

public ConnectThread(BluetoothDevice device)
{

this.device = device;
try
{

socket = device.createRfcommSocketToServiceRecord(APP_UUID);
}
catch (IOException e) { }

}

public void stopClient()
{

try
{

socket.close();
}
catch (IOException e) { }

}

Must be identical with the one
been used on the server side.

This method will allow other threads to stop the client
trying to get a connection. This method will also

indirectly allows other threads to free the resources
when there is no more any need in this connection.

© 2008 Haim Michael

Devices Connection (Client)

public void run()
{

adapter.cancelDiscovery();
try
{

socket.connect();
}
catch (IOException connectException)
{

try
{

socket.close();
}
catch (IOException closeException) { }
return;

}
manageSocket(socket);

}
}

We should call the cancelDiscovery()
method before the connection is made.

This is an imaginary method that will
handle the socket we succeeded to get.

This is where the actual connection is created.

© 2008 Haim Michael

Google Chat Sample

 Within the code samples of SDK 2.1 you can find the Chat

Sample application that allows two users that hold android

handsets to communicate with each other using this

application.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

