
© 2008 Haim Michael

Android Services

© 2008 Haim Michael

Introduction

 The android platform supports the 'services' concept we all

know from other popular operation systems, as windows. The

android platform supports two types of services.

 The first are known as 'local services', and they include those

services that belong to specific applications and cannot be

accessed from outside the applications they belong to.

© 2008 Haim Michael

Introduction

 The second are known as 'remote services' and they include

those services that can be accessed from applications other

than those that hold them as well as from those that hold

them.

 The 'remote services' are announced to all other applications

using the Android Interface Definition Language (AIDL).

© 2008 Haim Michael

Creating Services

 We can create a new service by defining a class that extends

the android.app.Service class,

public class MyService extends Service

{

 ...

}

and update the application manifest file with its details.
<service android:name="TestService1"></service>

Make sure to place the <service> element as a child element

of <application>.

© 2008 Haim Michael

The Service Class

 Over-viewing the public methods the android.app.Service

class defines will provide us with a better understanding of

how does a service work.
Application getApplication();

abstract IBinder onBind(Intent intent);

void onConfigurationChanged(Configuration newConfig);

void onCreate();

void onDestroy();

void onLowMemory();

void onRebind(Intent intent);

© 2008 Haim Michael

The Service Class

void onStart(Intent intent, int startId);

boolean onUnbind(Intent intent);

final void setForeground(boolean isForeground);

final void stopSelf();

final void stopSelf(int startId);

final boolean stopSelfResult(int startId);

© 2008 Haim Michael

The Service Class

 Calling the getApplication() method returns the

application that owns this service.

 Calling the onBind() method returns an interface through

which other applications that run on the very same device can

interact with the service.

© 2008 Haim Michael

The Service Class

 The onConfigurationChange() callback method is called

when the device configuration changes. The service can use

that method to reconfigure itself when the device configuration

changes.

 The onCreate() is called when the service is created. Once

that method was called, the onStart() is called. The

onDestroy() is called when the service ends its life.

© 2008 Haim Michael

Background Tasks

 The main reason for supporting the service concept is to allow

the implementation of background tasks. For getting a

background task we will usually use a local service.
An example for a background task can be checking for new emails. Common for

email client applications.

© 2008 Haim Michael

Inter Processes Communication

 Services can also serve as a mechanism for implementing

communication between separated processes on the same

device.
Implementing a remote service can be useful for handling the communications

between activities from various applications that interact with each other. Instead of

implementing separated mechanisms for each application all applications shall

contact the remote service that shall route each request to the right activity.

© 2008 Haim Michael

Separated Implementation

 Though possible, it isn't a good practice to provide a service

that functions both as a local and as a remote service. There

are differences in the life cycle of each one of these types of

services.

© 2008 Haim Michael

Local Service

 Local services are started when calling the

Context.startService() method. Once started, they will

continue to run on the background until we call the

Context.stopService() method in order to stop them, or

the service chooses to stop itself by calling the

Context.stopSelf() method.

© 2008 Haim Michael

Local Service

 Local services are useful for those cases in which we need a

background task to be executed.
One example can be the need to access a resource over the network periodically.

Another example can be performing some sort of a task (periodically as well).

© 2008 Haim Michael

Local Service

package com.abelski.samples;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class SimpleBackgroundServiceActivity extends Activity
{

public TextView tf;
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Button bindBtn = (Button) findViewById(R.id.bt_bind);

© 2008 Haim Michael

Local Service

bindBtn.setOnClickListener(new OnClickListener()
{

@Override
public void onClick(View arg0)
{

startService(new Intent(SimpleBackgroundServiceActivity.this,
 MyBackgroundService.class));

}
});

 Button unbindBtn = (Button) findViewById(R.id.bt_unbind);
 unbindBtn.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View arg0)
 {
 stopService(new Intent(SimpleBackgroundServiceActivity.this,
 MyBackgroundService.class));

}
});

}
}

© 2008 Haim Michael

Local Service

package com.abelski.samples;

import ...

public class MyBackgroundService extends Service
{
 private NotificationManager messagesManager;
 @Override

public void onCreate()
{

super.onCreate();
messagesManager = (NotificationManager)

 getSystemService(NOTIFICATION_SERVICE);
 }

@Override
 public void onStartCommand(Intent intent, int flags, int startId)

{
 displayMessage("starting Background Service");
 Thread t = new Thread(null,
 new ServiceWorker(),"BackgroundService");
 t.start();

}

© 2008 Haim Michael

Local Service

class ServiceWorker implements Runnable
{
 int i=1, sum=0;
 public void run()
 {
 while(i<=1000)
 {
 sum += i;
 try {Thread.sleep(1000);} catch(InterruptedException e){}

i++;
 System.out.println("i="+i+" sum="+sum);

}
}

}

@Override
public void onDestroy()
{
 displayMessage("stopping Background Service");
 super.onDestroy();
}

© 2008 Haim Michael

Local Service

@Override
public void onStart(Intent intent, int startId)
{
 super.onStart(intent, startId);
}

@Override
public IBinder onBind(Intent intent)
{

 return null;
}

 private void displayMessage(String message)
 {

 Notification notification = new Notification(R.drawable.icon,
message,System.currentTimeMillis());

 PendingIntent contentIntent = PendingIntent.getActivity(this, 0,
 new Intent(this, SimpleBackgroundServiceActivity.class), 0);

 notification.setLatestEventInfo(this,
 "Background Service", message,contentIntent);
 messagesManager.notify(R.string.noto, notification);

}

}

© 2008 Haim Michael

Local Service

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.abelski.samples"
 android:versionCode="1"
 android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">

 <activity android:name=".SimpleBackgroundServiceActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name=".MyBackgroundService"></service>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

© 2008 Haim Michael

Local Service

© 2008 Haim Michael

Creating Remote Service

 The purpose of having a remote service is to expose a

remotable object for Inter Process Communication (IPC).

 Developing a remote service is similar to developing a local

service.

 It is possible to develop a service that functions both as a

local one and as a remote one.

© 2008 Haim Michael

Creating Remote Service

 The first step in defining a remote service is creating an

.aidl file that describes it. The .aidl file uses the Java

syntax and it should be saved with the .aidl extension.

 Adding the .aidl file to our eclipse IDE the android eclipse

plug-in will call the AIDL compiler to generate Java interface

based on that .aidl file. The AIDL compiler is automatically

called as part of the build process.

© 2008 Haim Michael

Creating Remote Service

 The .aidl file includes the definition for the interface

IcurrencyService. This interface defines the methods

and fields available to the clients.

 Based on the .aidl file, the aidl compiler creates an

interface in the Java programming language.

© 2008 Haim Michael

Creating Remote Service

 That interface includes an inner abstract class named Stub

that extends android.os.Binder and implements our

.aidl interface. This inner abstract class includes the

definition for few additional required methods.

© 2008 Haim Michael

Creating Remote Service

package com.abelski.currencyservice;

interface ICurrencyService
{
 double getCurrency(String country);
}

This is the .aidl file we define

http://www.youtube.com/watch?v=Fdk2pHU0o9c

© 2008 Haim Michael

Creating Remote Service

package com.abelski.samples.remoteservice;

public interface ICurrencyService extends android.os.IInterface
{

public static abstract class Stub extends android.os.Binder
implements com.abelski.samples.remoteservice.ICurrencyService

{
...

}
...
public double getCurrency(java.lang.String currencyName) throws

android.os.RemoteException;
}

This is the auto generated interface the aidl compiler generates

© 2008 Haim Michael

Creating Remote Service

 Implementing the service will be by defining a class that

extends android.app.Service and includes an inner class

that extends the OurInterface.Stub class and implements

the abstract methods that were defined in the .aidl file.

 Exposing the service to other clients is done by providing an

implementation of the onBind() method as well as some

configuration code we add into the AndroidManifest.xml

configuration file.

© 2008 Haim Michael

Creating Remote Service

 The onBind() method should return a reference for an

IBinder object. That object should be of a type that

implements the interface that was defined by the AIDL

compiler.

© 2008 Haim Michael

Creating Remote Service
package com.abelski.currencyservice;

import android.os.RemoteException;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class CurrencyService extends Service
{

public class CurrencyServiceImpl extends ICurrencyService.Stub
{

@Override
public double getCurrency(String ticker) throws RemoteException
{

return 3.86;
}

}

© 2008 Haim Michael

Creating Remote Service
@Override
public void onCreate()
{

super.onCreate();
}

@Override
public void onDestroy()
{

super.onDestroy();
}

@Override
public void onStart(Intent intent, int startId)
{

super.onStart(intent, startId);
}

@Override
public IBinder onBind(Intent intent)
{

return new CurrencyServiceImpl();
}

}

© 2008 Haim Michael

Creating Remote Service

 In order to expose our service to other clients we should add

a service declaration to the AndroidManifest.xml file.

 The difference comparing with a local service is the need in

having an intent-filter element that exposes the service.

© 2008 Haim Michael

Creating Remote Service

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.abelski.currencyservice" android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">

<service android:name=".CurrencyService">
<intent-filter>

<action android:name=
"com.abelski.currencyservice.ICurrencyService" />

</intent-filter>
</service>

</application>
<uses-sdk android:minSdkVersion="7" />

</manifest>

© 2008 Haim Michael

Creating Remote Service

 If there are thrown exceptions within the remote service they

won't be sent back to the caller.

 When a client calls the remote service the call is executed

synchronously. When the remote service requires more than

few milliseconds we better call it within a separated thread.

© 2008 Haim Michael

Using Remote Service

 Adding the .aidl file to another client application project will

indirectly create the same generated interface we have in the

remote service.

 We first need to instantiate a ServiceConnection object.

We should define a class that implements this interface.

© 2008 Haim Michael

Using Remote Service

package com.abelski.currencyservice;

interface ICurrencyService
{
 double getCurrency(String country);
}

This is the .aidl file we define

© 2008 Haim Michael

Using Remote Service

 Calling bindService passing over the accurate required

intent will make the remote service available for the client

application.

 Calling unbindService passing over the reference for the

ServiceConnection object will tear down the remote

service.

© 2008 Haim Michael

Using Remote Service
public class MainActivity extends Activity
{

private ICurrencyService currencyService = null;
private Button bindBt;
private Button callBt;
private Button unbindBt;

@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
bindBt = (Button) findViewById(R.id.bind);
bindBt.setOnClickListener(new OnClickListener()
{

@Override
public void onClick(View view)
{

bindService(new Intent(ICurrencyService.class.getName()),
serviceConnection, Context.BIND_AUTO_CREATE);

bindBt.setEnabled(false);
callBt.setEnabled(true);
unbindBt.setEnabled(true);

© 2008 Haim Michael

Using Remote Service
Toast.makeText(MainActivity.this,

"Currency Remote Service is Binded",
Toast.LENGTH_SHORT).show();

}
});

callBt = (Button) findViewById(R.id.call);
callBt.setOnClickListener(new OnClickListener()
{

@Override
public void onClick(View view)
{

callService();
}

});

© 2008 Haim Michael

Using Remote Service
unbindBt = (Button) findViewById(R.id.unbind);
unbindBt.setOnClickListener(new OnClickListener()
{

@Override
public void onClick(View view)
{

unbindService(serviceConnection);
bindBt.setEnabled(true);
callBt.setEnabled(false);
unbindBt.setEnabled(false);
Toast.makeText(MainActivity.this,

"Currency Remote Service is Binded",
Toast.LENGTH_SHORT).show();

}
});
unbindBt.setEnabled(false);
callBt.setEnabled(false);

}

© 2008 Haim Michael

Using Remote Service
private void callService()
{

try
{

double result = currencyService.getCurrency("USD");
Toast.makeText(MainActivity.this, "Currency Exchange Rate of USD is "

 + result, Toast.LENGTH_SHORT).show();
}
catch (RemoteException exception) { }

}

private ServiceConnection serviceConnection = new ServiceConnection()
{

@Override
public void onServiceConnected(ComponentName name, IBinder service)
{

currencyService = ICurrencyService.Stub.asInterface(service);
}
@Override
public void onServiceDisconnected(ComponentName name)
{

currencyService = null;
}

};
}

© 2008 Haim Michael

Remote Service Code Sample

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

